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Laplace transforms and regular double asymptotic expansions are used to solve 
the problem of ordinary chemical mass transport in a permeable tube, where there 
is small radial convection through the membrane wall and where the length-to- 
diameter ratio is large. The system is taken to be dilute and Newtonian and the 
solution is found to higher order in two small parameters. Results indicate that 
the exit concentration decreases markedly as the diameter, membrane per- 
meability and tube length increase, and that changes in mass transport owing to 
variations in radial convection are much more significant than those due to the 
same order of magnitude changes in the resistance of the chemical solute to 
passage through the membrane (transmittance). In  addition, the maximum 
effects of changes in the radial convection and transmittance are not at  the 
membrane itself (r = 1) ,  but rather roughly at  radial values of 0.6 and 0, 
respectively. 

1. Introduction 
An analysis has been undertaken to provide a model for mass transport, in 

laminar flow of a Newtonian fluid through a permeable tubular membrane, where 
there exists a small radial flux of fluid (ultra-filtration). Although the model is 
motivated by the study of blood flow in a hollow-fibre type of artificial kidney 
which consists of bundles of these tubes, the equations are solved in generality, 
so that other possible applications, such as in desalination and heat transfer, may 
be included in the solution. Only those findings pertinent to the artificial kidney, 
however, will be discussed in this paper. 

The literature on both reverse osmosis in desalination and laminar heat transfer 
is closely related to the subject under consideration here. In  reverse osmosis, the 
diffusion equation is solved for a boundary condition in which the flux of solute 
(salt) through the membrane is due solely to the solvent (water) flux. The fluid 
velocity through the membrane depends on both the hydrostatic and osmotic 
pressure difference, and the solute dragged through the membrane is proportional 
to the ‘rejection coefficient ’. According to  Probstein‘s (1972) review of desalina- 
tion, it appears that solutions are obtained for simplified systems in which the 
velocity field is given in terms of some known bulk ultra-filtration velocity, which 
is taken to be either constant along the membrane or dependent on the concen- 
tration (Brian 1966). Thus, the reverse-osmosis problem differs from the one 
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considered in this paper in several ways. In  reverse osmosis, the flux of solute 
through the membrane arises solely from the mechanism of ultra-filtration, and 
the ultra-filtration velocity depends on the osmotic pressure, whereas osmotic 
pressure is a negligible effect in this analysis. I n  addition, the ultra-filtration 
velocity is not determined from the hydrodynamic equations as a function of 
distance along the membrane in the reverse-osmosis literature. 

By and large, in most of the laminar flow heat-transfer literature, the diffusion 
equation is solved with wall boundary conditions of constant temperature or 
constant heat flux, neither of which correspond to the mass-transport problem 
under discussion in this paper. This classic ‘Graetz ’ problem has been studied 
extensively (e.g. Kays 1966; Goldstein 1938); but the type of boundary condition 
that includes the convection of heat or mass through the membrane by a velocity 
dependent on the pressure difference has not been considered. 

Grimsrud & Babb (1966) were the first to solve the problem of chemical diffusion 
in blood flowing through two infinite flat plates, following the theory of De Bye & 
Schenk (1953). Colton et al. (1971) solved the same problem by using asymptotic 
methods to determine higher eigenvalues, so that the entrance region (with 
respect to concentration) could be studied. Both Grimsrud and Colton assumed 
that the flow down the plates was strictly Poiseuillian, i.e. zero ultra-filtration. 

Popovich et al. (1971) considered the effect of non-zero fluid velocity through 
the plates by modifying the boundary condition to include convective as well as 
diffusive transport, and by allowing two components of velocity. The velocity 
field used in their study was taken from the work of Berman (1953), who solved 
the Navier-Stokes equation asymptotically for small values of the ultra-filtration 
velocity, which was specified constant at the plate. Although this last assumption 
simplified the analysis to a large extent, it  was not realistic, since the ultra- 
filtration velocity should vary with the pressure difference across the membrane 
to a first approximation, so that it should be determined from the hydrodynamic 
equations as a function of distance. 

In this paper, we consider the mass transport in a Newtonian fluid flowing 
steadily through a small-diameter tube, in which the radial velocity through the 
membrane is not known a priori, but is proportional to the pressure difference. 
The tube length-to-diameter ratio is assumed large enough so that there are no 
end effects. The solution is found for the case in which the net flux of fluid 
through the tube wall is smaller than the average axial flux. This condition is 
clearly valid both when radial convection is ‘small’ in some sense, and when we 
confine the solution to a bounded region axially. Both conditions are approxi- 
mated in the actual hollow-fibre dialyser. 

The concentration (mass fraction) of solute is a given constant cI at an arbitrary 
‘entrance’ point designated by z = 0, and we solve for it as a function of space 
and the parameters of the system. 

2. Field equations 
The flow is steady and independent of angle in cylindrical co-ordinates and the 

solution is dilute so that the viscosity ,u and total mass density p may be taken 
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as constants. The components of velocity are denoted by u = (u, w) in the radial r 
and axial z directions, respectively; P denotes pressure, D molecular diffusivity 
( I O - ~  cm2 s-l), a tube radius ( N lop2 cm), W mean axial velocity ( - I em s-I), 

solute membrane permeability ( N em2 s-I), and K hydrodynamic per- 
meability ( ,., cm). The actual geometric fibre length is - 10 cm. The basic 
data are taken to correspond roughly to the flow of one chemical solute, such as 
urea through a single fibre of a typical hollow-fibre hemodialyser; in this case, 
one manufactured by Cordis-Dow. 

Non-dimensionalization. There are four independent dimensionless numbers 
that automatically arise from the scaling. The most obvious choice for scaling r 
and w is r = ar* and w = Ww*, where the * denotes dimensionless quantities. 
However, there are two choices for the radial velocity scale: the mean ultra- 
filtration velocity U and the diffusion velocity Dla. Since 

D/a - 10-3cms-1 and U < 10-4cms-1, 

the radial diffusion speed dominates, and we choose to scale u = Du*la. Also, 
bhe axial length scale 1 is based on the ratio of axial velocity to radial velocity 
rather than the geometric length. Thus, 

l /a  = W/(D/a)  or 1 = a2W/D 
(i.e. 1 - 10 em) and so z = a2Wz*/D. The pressure is non-dimensionalized so that 
the gradient in the axial direction is the same order as the viscous forces 

Substitution of the above into the equations defining the model gives the 
(P = pW2P*/D) .  

following dimensionless constants : 
radius - 10-3, 

D 
aW - axial length scale 

e = - -  

& = -  KaW2 N ultra-filtration number w 

0 2  

R = p 

S = - - Sherwood number - 1. 

N Reynolds number - 1, 
P 

Pa 
D 

In  the related heat-transfer problem (Kays 1966, ch. S), the dimensionless 
numbers S and E: correspond to the Nusselt and Prandtl numbers (omitting 
specific heat and density): S N 4' and E N (Re)- l .  Thus, 1 - aRe,  so that 
the scaling in this problem corresponds to Ohat in the heat-transfer problem. 

The dimensionless equations of motion and total mass conservation for a 
Newtonian fluid in cylindrical co-ordinates are (omitting *) 

e 3 R u . V ~  = - P , + e 2  -(ru,r),r {: 
1 
r 

eRu.Vw = -q2+- (rw,r),r+E:2w,ZZ, 
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The dimensional equation expressing conservation of mass of solute in steady 
state flow (Aris 1962) is 

where c is the mass fraction of solute p,/p, j = pa@, - u) is the flux of solute 
relative to the mass average velocity u, pa is the mass density of solute, and u, is 
the solute velocity. For a dilute solution in which thermal, pressure and forced 
diffusion are neglected, the constitutive relation between j and concentration is 
taken to be Fickian (Bird et al. 1960): 

pu .Vc+V. j  = 0, (2 .5)  

j = -pDVc, (2.6) 

so that (2.5) and (2.6) give the dimensionless diffusion equation 

Since E and &are small parameters of the same order of magnitude, it is necessary 
to consider both effects in the solution to follow. Clearly, neglecting terms of 
O(e2) in (2.7) means that axial diffusion is small compared to radial diffusion; 
however, first-order e terms enter (2.7) in the velocity field. These O(e) terms must 
be included, if a solution is sought correct to O(6),  since both dimensionless 
numbers are of the same order of magnitude. 

In  addition to the above observations, we may expect this problem to be 
singular near the x boundaries, because highest-order derivatives are multiplied 
by powers of E in (2.1), (2.2) and (2.7). This fact will be discussed in § 4. 

3. Boundary conditions 
At the porous wall, the non-slip condition is assumed valid axially, and the 

radial velocity is taken to be proportional to the pressure difference across the 
wall (figure 1). These are the simplest physically reasonable boundary conditions 
for slightly hydrodynamically permeable membranes. Osmotic pressure effects 
are neglected, since they can be eliminated artificially by suitable molecular 
additions to the outer dialysate fluid space. In dimensionless form: 

u = 6(P-Po) on Y = 1 forallz, (3.1) 
w = o  on r = 1 for all z ,  (3.2) 

where 6 is the ‘ultra-filtration’ number, and Po is the constant outer pressure 
assumed to approximate the turbulent dialysate flow condition. Equation (3.1) 
differs from the boundary condition in reverse osmosis, since the osmotic 
pressures are neglected and u is independent of the concentration in this problem. 

The boundary conditions are deliberately posed, so that there is a basic 
Poiseuille flow, and no end conditions are imposed on the velocity field. Super- 
imposed on this main flow, however, is the effect of a small, 2-dependent, radial 
convection through the tube walls. In  addition, the pressure and pressure 
gradient must be supplied at the entrance z = 0 (i.e. P = Pz and P,2 = G), where 
PI and G are known in terms of E and 6. 
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FIGURE 1. Diagram of a single fibre of radius n with concentration CI at z = 0. The axial 
velocity is denoted by w(r, z )  and the mass densities of solute CI inside and outside the tube 
me p a  and pea, respectively. The dialysate pressurePo is a constant in space, and the concen- 
tration c of any solute cc is defined as p,/p, where p is the total density. The dialysate concen- 
tration is negligible relative t o  the blood concentration as far as diffusion across the membrane 
is concerned. 

According to Kays (1966), Langhaar’s work on entry length in a tube indicates 
that fully developed laminar flow is reached when x/a &R, so that in the 
problem considered in this paper the entry length is - cm. Thus, entrance 
conditions are taken to be fully developed flow (in the sense of no entrance effect) 
and constant concentration: 

c = cI at x = 0 for all Y. (3.3) 

The mass flux of chemical solute through the wall depends on the amount 
carried through by both radial convection and ordinary diffusion. Following 
Popovich (1971), the boundary condition is taken to be the synthesis of a diffusive 
flux depending on the membrane permeability P (as in Colton’s (1971) hemo- 
dialysis analysis) and a convective flux depending on the ultra-filtration (as in 
Probstein’s (1972) or Brian’s (1966) reverse-osmosis analyses). The solute 
boundary condition, then, reduces to that in the desalination literature when 
P = 0, and to that in hemodialysis literature when u = 0. 

In  effect, it is necessary to postulate a constitutive equation for the total mass 
flux of solute through the membrane wall as a function of the radial velocity, the 
density of solute pa and the density of solute in the outer dialysate space pea. The 
total mass flux of solute per unit area through the tube wall is assumed to be a 
linear function of u, pa and pOa (figure 1). In  dimensional terms, 

A 

paua. n = ip,u. n + ~ ( p ,  -Po,) on r = a, x > 0, (3.4) 
where n is the outward normal. The term kpau.n is the flux through the wall 
due to radial convection of the bulk fluid, and $ is a retarding factor called the 
‘transmittance’, which, in the absence of ordinary diffusion through the 
membrane ( P  = 0)’ may be defined as the ratio of solute flux through the mem- 
brane to the solute flux convected t o  the membrane by the mass average velocity 
Brian 1966). (Therefore, $ ranges from 0 to 1, and may be visualized via a 
membrane pore model as r 1 if the membrane pore size is very much greater 
than the solute molecular size, and z 0 if the pore size is very much less than 

I1 F L I  63 



162 S. M .  Ross 

the molecular size. The sum of $ and the 'rejection coefficient ' in reverse osmosis 
(Liu 1971; Brian 1966) equals 1. The term p(pa-poa) represents ordinary 
Fickian molecular diffusion through the wall. 

Using the definition of j, which states that paua = j +puu, and dividing by p, 
we get 

{cu-DVc}.n = fcu.n+P(c-co) on r = a, z > 0, 

where co 3 p0Jp is the outer fluid concentration. Neglecting co relative to c and 
rearranging terms, the dimensionless form of this boundary condition may be 
written a.s 

(3.5) 

C , ~ + ~ C =  0 on r = 1, z > 0, (3.6) 

where p = p ( x )  = (E-l)uI,=,+s, (3.7) 

and X is the Sherwood number. 
Equation (3.6) reduces to Probstein's (1972) and Brian's (1966) boundary 

condition when X = 0, and to Colton's (1971) when ZL = 0. The assumption that 
c,, is small relative to c approximates the condition in a hemodialyser, where the 
dialysate concentration enters at zero concentration and high flow rate. 

Existence conditions in cylindrical co-ordinates where r = 0 may be singular 
are 

4. Asymptotic expansion 
The hydrodynamic and mass-transport problems defined by (2.1), (2.2), (2.3), 

(3.1), (3.2), (3.8) and (2.7), (3.3), (3.6), (3.9), respectively, are mathematically 
uncoupled, in the sense that we can solve for the velocity field first without 
considering the mass transport. This is, naturally, the result of the fact that the 
solution is dilute and viscosity is assumed concentration independent. The mass- 
transport equations are solved once the velocity field is determined. 

Since B and 6 are two small parameters of the same order, we seek a solution 
correct to first order in the doubly asymptotic form 

f = j ' 0 . 0 )  + &p 0)  + &f'O, 1) f . . . , (4.1) 

wheref(i, nis a function of r ,  z and the other parameters of the system. All unknown 
functions (u, P, c )  are expanded in the form (4. l), as well as the given pressure and 
pressure gradient at  z = 0 (PI and G). Substitution of these expansions into the 
basic system will give sets of equations and boundary conditions corresponding 
to the coeficients of each BW. 

One possible mathematical difficulty arises because E is an expansion parameter 
multiplying highest-order x derivatives, and the general perturbation problem is 
singular. Specifically, since E is small, second derivatives with respect to z are 
neglected in the first approximation, and the solution for the velocity field in the 
form (4.1) is not uniformly valid for a11 z,  since it is unbounded as ( z (  + co (i.e. 
lirn [LI(O,~)~ + a). Physically, this means that the condition of small radial flux 

I4--tm 
is violated at infinity. 
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5. Hydrodynamic solution 
The solution of the hydrodynamic equations correct to order 8 and S is straight- 

forward. The zeroth-order equations are the usual ones for flow through rigid 
illfinite tubes. The inertial term Ru(O,O). Vd0*O) in the O(e) system disappears, 
since = w:O;O) = 0, and the Reynolds number does not enter the solution to 
this order. The velocity and pressure field are of the form 

where 

are given constants. 
The basic flow (zeroth-order) is Poiseuille flow through a tube, and the ~ ( 1 7 0 )  

and w(O>l) terms are paraboloids of revolution in r ,  but only the 6 term is axially 
dependent (5.7). In addition, the only non-zero component of radial velocity is 
due to ultra-filtration (8 term), and it is a linearly decreasing function of x with 
slope G ( O p 0 )  at the wall (5.4). The pressure gradient P,2 is constant up to O(B),  with 
ultra-filtration causing a second-order variation in z (5.10). Clearly, 

lim [ u ( O > ~ ) ~  -+ 00 and lim IP(,:l)I -+ co, 
14+= l4-Q 

so that this asymptotic form of solution breaks down for large enough z ,  as dis- 
cussed in Q 4. In  the region [0,  L] ,  however, the solution is a valid representation 
of a, basic Poiseuille flow with a small radial convection (ultra-filtration) effect 
superimposed upon it, as well a8 a small E effect. 

Even though the aforementioned difficulties arise for large 1x1, the expansion 
is valid in the finite region of practical interest 0 < z < L. Therefore, the singular 
aspects of the problem need not be considered in this analysis, since we confine 
applicability of the solution to a bounded region of the z axis. 

6. Mass-transport equations 
The concentration is expressed as in (4.1): 



where 

In addition, from (3.7) and (5.1), 

/3(0~0) = X (constant Sherwood number), (6.10) 

~ ( 0 . 1 )  = ( E -  1) u.(0,1) at r 1. (6.11) 

To determine c, we must first solve the (0,O) system. From this result and the 
known hydrodynamic solution, we can then calculate F i , i )  andB(isi)for the ( 1 , O )  
and (0 , l )  systems, so that the inhomogeneous terms in (6.2) and (6.3) are known 
once is known. We can then proceed to solve for c(l,O) and 

7. Zeroth-order solution 
Since ultra-filtration is neglected to this order, the system is a variant of the 

classic Graetz problem in heat transfer (Kays 1966). However, as mentioned in 
$1, the boundary condition is different in form, and comparison of the two 
solutions for corresponding constant Sherwood number S and local Nusselt 
number may be misleading. 

The differential equation (6.2) and boundary condition (6.3) are homogeneous 
in this case, and a solution of separable form exists: 

where 

and R ( O > O )  satisfies the second-order linear differential equation and boundary 

(7.3) 
oonditions 

1 
r fp. 0)” + - R(O, 0)‘ + hW(O.O)BO, 0) = 0, 

where 
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Equations (7.3)-(7.5) define a Sturm-Liouville problem giving a set of eigen- 
values (A,} and eigenfunctions {RFOJ} for which the solution is non-trivial. Since 
the operator r-l(rHoao)’)’ with boundary condition (7.4) is self-adjoint, the eigen- 
values are real, and the eigenfunctions are orthogonal with respect to rw(O,O). 
Furthermore, the {I22O1} form a complete set, so that any function of r satisfying 
the boundary condition can be expanded in a series of them. The solution follows 
the usual method for eigenvalue problems of this type, giving 

m 

c ( O , O )  = c A,@0’exp{-Anx}, (7.6) 
71.=1,2,3, ... 

f ~ Q , O ~  = 1 f $ O , O )  = 15 f(o,o) - b { f m  (0,O)- fm-2} (0,OJ for m = 2 , 4 , 6  ,..., 
(m + 2)2 4 , m f 2 -  

m < E IhG(O,O), 4 C (m+X) f 2 O )  = 0. 
m=O,2,4,  ... 

From the form of the solution, we should note that is an even function of r ,  
and that c:O,O’ = 0 on r = 0 as a consequence. Furthermore, depends on 
dimensionless parameters S and G(O, O). However, the latter is a fixed number if W 
is defined as an average velocity, so it is not to be regarded as varying. The 
dependence of the solution on the actual dimensionless pressure gradient, or 
equivalently on W ,  enters through the dimensionless axial length. 

8. Solution of e and 6 systems 
8.1. Transformed equations 

The partial differential equation and boundary conditions (6.2)-(6.5) can be 
reduced to a system of ordinary differential equations in r by taking their Laplace 
transform with respect to z .  This approach is useful in these two cases, because 
Pci, j) and Bci,i) are expressed as infinite sums, and the equations are not separable, 
as is the ( 0 , O )  problem. If we define the Laplace transforms as 

(8.1) 

(8.2) 
(8.3) 
(8.4) 

g i ,  i) = <‘id’ - 9 &, j) 
p(i, i) = pn, i) - dip{’(i, i)}, 

Bci, i) = B(i,il = 9{B(i, i)}, 

(D, = @,(An, s) = 9 { z k  exp { - A, x } } ,  

IT,S) - { 1, 
( T , S )  - 

(8)  

where 2(f) = f ( r ,  x )  exp{ -sz }dz ,  Res > 0, 
!OW 

then the transformed equations are 
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Equations (8.6)-(8.8) are ordinary differential equations in r where ( ( i * j )  is an 
analytic complex-valued function of s. 

Since (8.6)-(8.8) are linear, we can divide the solution into a 'particular' p(i , i )  
and 'complementary' @i) part defined below. 

(8.9) 

(8.10) 

5'" i) = p(i ,  i) + (fi, j), 

P(p'i.3' , T r  + +,t;3' - sw(O, 0) P (i, 73 = F(i, i), 1 . .  A 

r 
where 

and 

(8.11) 

4,i;n+p(0,0)q(i,i) = B(i,i)-Bi,i) on r = 1, (8.13) 

lim Ig(iai)I < co, (8.14) 
r+O 

where DCi, j) $,$ j) + p(0, O L p  j). (8.15) 

We first solve forp@*j), calculate &j)from (8.15), then solve (8.12)-(8.14), which 
consists of a homogeneous equation with an inhomogeneous boundary condition. 
Further subdivision of the solution will be made for components of $ti*+) and 
&f).  Since these result from products of the (0'0) solution and velocity, and 
since O )  is expressed in the form of an infhite sum, it can be shown that FCi3 i) 
and l?(i> f) are sums over a finite number k of fuiictions of the form 

A 

m 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

thus it is useful to express the transformed concentration as 

gi, i) = &w. (8.20) 

Assuming that integration and infinite summation can be interchanged, the 

k 

trmsforms of (8.16)-(8.19) can be written as 

(8.21) 

(8.22) 

(8.23) 

(8.24) 
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Furthermore, f2ki )  can be expressed as a power series in r ,  because it arises from 
powers of r and the eigenfunctions REo’ and REo)’: 

W 

f2p = x az$)(h,) rm. 
WL = 0 , 2 , 4 ,  . . . 

Putting (8.25) into (8.23) allows us to rewrite P p i ) :  
m 

A .  

FCLi) k = g%J)(s) P ,  
~ a = O , 2 , 4 ,  ... 

where 
m 

(8.25) 

(8.26) 

Y 

9(cJ’ = c agp(h,) Qk(hn, 5).  (8.27) 
n = l , 2 , 3 ,  ... 

The a$d) and bzkj) are known from the ( 0 , O )  solution alone. Specifically, for the 
e case, we can show that there is only one term ( E  = 0) and that 

a(l&o’(h,,) = x.60), a“,O)  mo = %no (LO) (fm (0,O) - f m - 2 ) ,  (0,O) m = 2 , 4 , 6 , . . . ,  

where ~ $ 6 ~ )  = h,A,G(1~0)/4an, and lastly that bEbo) = 0. In  the same way, ufik) 
and b(,hl) can be calculated, although there are three terms ( E  = 0,1 ,2)  and the 
algebra is more complicated in that case. 

The systems of transformed equations can now be listed as 

“6 i )  = x g& i), (8.28) 
k 

where 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

(8.34) 

(8.36) 

(8.37) 

The method of solution involves, first, the calculation of UZJJ, bghj) and ok for 
each k using the (0,O) solution, which has previously been found. Next, we obtain 
g%J’ and find a particular solution using a power series in r .  We then calculate 
&j) and .Bpi), solve (8.32)-(8.34), add p$i’ and qfci‘i), and sum over k. The 
details involved will be considered in 3 5 8.2 and 8.3. 
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8.2. Particular solution 

A power series solution of (8.30) in which boundary conditions are not specified 
can be found by equating coefficients of rm, giving the result 

W 

*pi) = p k f ( 8 )  rm+2, (8.38) 

where *p = 1 4gOd (i i) > (8.39) 
i~#ii)-@&i) = (&i) 

g2k 9 

pg& = (m + 2)-2{g24&,k + rY(p22) - l)m-2, (i,j) k )} for m = 2,4 ,6 ,  . . . , 

na=0,2.4, ... 

0 3 - IsG(OB0). 
4 

Equations (8.38)-(8.39) give a particular transformed solution for each set of 
(g$rj)> derived from the ( 0 , O )  solution. 

8.3. Comnplementary solution 

Calculation of f @ j )  from (8.35) yields 

W 

@,i) = c (m+p(o>o))p$i) 
m=2,4 ,  6, ... 

(8.40) 

h 

Since&,j’ can be obtained from results of the (0,O) solution, the sum@ii) - D‘i*i k 

in (8.33) is known. Equations (8.32)-(8.34) are similar to (7.3)-(7.5), with the 
exception of an inhomogeneous boundary condition in this case. Accordingly, 
we can find a series solution: 

where the coeEcients {qm> are determined by 

and 

(8.41) 

m h 

S ( S )  = 2 (m+p,O))?jm. 
m=O, 2 ,4 ,  ... 

(8.43) 

(8.44) 

8.4. Total solution 

The concentration is obtained by inverting algebraicdly the transformed total 
concentration ,!$i) (8.28): 

(8.45) 

From the resulting equations] we can immediately observe that $(i* f )  is singular 
a t  those points on the negative real s axis corresponding to the eigenvslues 
s = - A,. This occurs in the particular solution since @k and consequently g$dJ 
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C 

FIGURE 2. Total concentration profiles at z = L for varying values of tube diameter holding 
the volume flow rate fixed. T ,  c dimensionless. Diameter (em) : 0, 0.01 ; a, 0.02; 0, 0.09. 

have poles there, causingptyi) to be singular. In  the complementary case, J$j) is 
singular at s = -Arn, because these points are roots of the eigenvalue equation 
(i.e. S(s) = 0 at s = - A n ) .  

h 

9. Discussion 
Results from the model were obtained for the case of primary interest in 

hemodialysis : the effect of ultra-filtration on the concentration profile. To this 
end, the pressure and pressure gradient at z = 0 were taken arbitrarily to be given 
numbers independent of both e and 6 (i.e. P,$ ]a=o = G(O,O), P l a = o  = PlP,O)), so that 
the contribution of ~ ( 1 %  0) to the total solution was zero and c = do, O )  + 6c(O, 1) to fist 
order. The result that c(l,O) = 0 when G(I.0) = 0 could have been deduced directly 
from the equations in 3 6; however, the e terms were retained at  that point since 
the mathematics involved in both the S and e solutions was the same ( 3  8). 

Figures 2, 4 and 5 show the total concentration C ( O * ~ ) ~ -  8dO.l) as a function of r 
at distance L down the tube, as three parameters vary holding the others fixed at  
their basic values. Since cc03 O) is an order of magnitude greater than 8d0,l), subtle 
changes in the higher-order concentration term are obscured in figures 2-5, which 
necessitates considering SdO, l) alone (figures 6-9). The entrance concentration is 
taken arbitrarily to be cr = 100 in all the figures, and the basic values of the 
parameters are D = 1.8(10-6) crn2s-l, P = l-i(10-3) cm s-l, Ic^ = 0.9, a = 0.01 em, 
L = 7-62 cm, W = 1 cms-1, Pulp = IOOmmHg, and K = 10-llcrn. The values of 
diffusivity, permeability and transmittance correspond to the solute urea. 

The effect of changing the tube radius while holding the flow rate fixed, as well 
as the other parameters, is given in figure 2. As the radius a increases, the mean 
axial velocity decreases as a-2, which allows more time for diffusion to occur as 
the particle travels distance L (i.e. 'residence time' increases). This should cause 
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FIGURE 3. Total concentration profiles a t  three distances down the tube. r ,  c dimensionless. 
L (em): 0, 7.62; a, 5.08; 0, 10.16. 

C 

FIGURE 4. Total concentration profiles at  z = L for varying membrane permeability. r ,  c 

dimensionless. F(cmmin-l): 0, 0.0335; A, 0.067; 0, 0.134. 

the concentration at L t o  decrease. However, there is an opposing effect, since 
the surface area to volume ratio decreases as u-l as uincreases. The large decreases 
in concentration in figure 2 with doubling values of u clearly indicate that the 
residence time of a particle is dominant over the area/volume ratio to a significant 
extent. 

The behaviour of the solution at three distances down the tube is shown in 
figure 3. The resulting curves are typical for solutions that can be represented as 
a slim of decaying exponentials in z, as is the case here. In  the actual computation, 
five eigenvalues were determined giving values ranging from O( 1) t o  O( 150), so 
that for all x greater than some short distance down the tube, all except the first 
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F I G U ~  5. Total concentration profiles at  z = L for varying values of ultra-filtration pressure 
Plz=,-Po. T, c dimensionless. P,,,(mmHg): 0, 0; A, 100; a, 200. 
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FIGURE 6. Higher-order concentration profiles Sc(O*1) at z = 7-62 ern for varying values of 
ultra-filtration pressure. r, 8do,1) dimensionless. P& ( ImHg) :  A, 100; 0, 160. 

few exponential terms are negligible. Obviously, though, as z -+ 0, all the 
exponential terms are approaching O( 1) and more An's are needed t o  approximate 
the exact solution well. 

The membrane permeability influences the total solution via boundary condi- 
tion (3.7), by changing values of Sherwood number 8, which can be considered the 
ratio of the speed of diffusive transport through the membrane to the speed of 
radial diffusion. Since the computed results show that each of the eigenvalues 
are monotone increasing functions of X, as the permeability increases, so will the 
eigenvalues thereby decreasing c at z = L, as seen in figure 4 (also see the 
appendix). Note that the curves in figure 4 are close in value to those in figure 2,  
since the zeroth-order solution is a function of 8, so that the effects of varying 
radius and permeability appear only at higher order. 
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FIGURE 7 .  Higher-order concentration 
difference profile A8d0,l) at z = L for 
ultra-filtration pressures of 100 and 150 
mmHg. T ,  - 8(c(n,1)l~nE=150 - c ( ~ ~ ~ ) [ ~ , , , ~ = ~ ~ )  
dimensionless. 

FIGURE 8. Higher-order concentration 
profiles S ~ ( ~ , l ) a t  z = L for varying mem- 
brane transmittance. r ,  - Sd0s1) dimen- 
sionless. E :  0, 0.9; A, 0.7; 0, 0.3. 

To examine the effect of ultra-filtration on the solution, i t  is necessary to con- 
sider the higher-order term &(0>1) separately, since only the gross results are 
demonstrated in the total concentration curves of figure 5. Note that is 
negative in figures 6-9. Since variations in the hydrodynamic permeability K 
cause only uninteresting linear changes in 6, we choose to look at the effects of 
varying the 'ultra-filtration pressure' (defined in this paper as the pressure 
difference between the blood at  distance L and the dialysate) and the trans- 
mittance f of the chemical solute through the membrane. Recall that 0 < f < 1 
and f + 1 as the molecular size of the chemical solute becomes much smaller than 
some imagined membrane pore size, and we approach zero retardation. From 
boundary condition equation ( 3 4 ,  it  might seem at first glance that the effects 
of both f and ultra-filtration pressure changes should be the same, since (5.4) 
shows that the radial velocity is directly proportional to dialysate pressure Po and 
that f multiplies u in (3.5). However, u also enters in the convective acceleration 
term in (2.7) and comparison of the magnitudes of 8dO-l) in figures 6 and 7 with 
figures 8 and 9 clearly shows that changes in ultra-filtration pressure are much 
more significa.nt than the same order of magnitude changes in transmittance. 

The fact that the concentration at z = Ldecreases as the transmittance increases 
can be explained physically by the increase in the mass flux of solute convected 
through the membrane. However, the result that increased ultra-filtration also 
causes a decrease in concentration for any $ seems to be contrary to the expecta- 
tion that the concentration would increase, since more solute per unit volume is 
retained inside the tube than is convected through it. Physically, the explanation 
lies in the fact that as ultra-filtration pressure increases, more fluid is drawn out 
through the membrane so that there is a corresponding drop in the axial velocity 
and the time a fluid particle takes in travelling a distance L increases, allowing 
more ordinary diffusion to take place. Since diffusion is more significant than 
ultra-filtration, the net result is a decrease in the concentration at  x = L. 
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FIGURE 9. Higher-order concentration difference profiles a t  z = L for transmittances of 0.9 
and 0.3. r ,  - S ( c ~ o ~ 1 ~ ~ , , o . , - c ~ 0 ~ 1 ~ ~ k = ~ 3 )  dimensionless. 

U'O, 11 

FIGURE 10. Higher-order radial velocity profile normalized so that ~ ( 0 . 1 )  

a t  the membrane = 1. r,  u(0,l)  dimensionless. 

A simplified model of the equations, presented in the appendix, indicates that 
the concentration decreases as both X and f increase and as either u or w 
decreases. However, the axial velocity w is dominant and it decreases by conti- 
nuity as u increases, so that the net effect is a decrease in concentration as u 
increases. Of course, if the axial velocity were kept constant, this result would be 
lost and the concentration would increase as ultra-filtration increases, since there 
would be no opposing w effect. 

The curves in figures 6 and 8 have basically the same profile shape when plotted 
on the same scale. It is noteworthy that the maximum negative values of dc(O*1) 
are roughly at  r g 0.6, and not at  the membrane itself, as might have been 
expected. This may be due to the fact that the radial velocity (figure 10) has a 
maximum at r g 0.816, while the zeroth-order concentration is maximum at the 
tube centre r = 0 so the maximum radial solute flux lies somewhere in 
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0 < r < 0.816. A similar arguement can be used t o  explain the curve showing 
the difference profile for two values of ultra-filtration pressure (figure 7 ) .  In 
addition, the build-up in concentration near the membrane (concentration 
polarization) is evident from the figures; however, the hydrodynamics are not 
affected, as they are in reverse osmosis. 

Quite difierent behaviour is shown in figure 9, which gives the maximum effect 
of the transmittance difference at  r = 0, not at  the membrane. This is surprising, 
since one would expect the major difference to be at r = 1, owing to a build-up in 
concentration at the membrane as f decreases. Deeper reflexion, though, indicates 
that there are possibly two physical effects to consider. As k decreases, with the 
ultra-filtration velocity fixed, there is an increase in concentration near the 
membrane, so that the total concentration c( I, L)  increases near the membrane. 
Since the dialysate concentration is taken to be zero, there is a larger difference 
in concentration across the membrane, causing more ordinary diffusion across it. 
Thus mass transfer due to k and ordinary diffusion are coupled in this sense, 
a decrease in the former causing an increase in the latter. Furthermore, as c( 1, L )  
increases, the difference in the concentration gradient within the blood will 
decrease (i.e. c(0, L)  - c( 1,L) decreases), so that the radial diffusion within the tube 
is affected, possibly exerting its major influence at r = 0, as indicated in figure 9. 

The author thanks Professor A. L. Babb of the Chemical Engineering 
Department at the University of Washington in Seatle for suggesting this 
problem, and Mr R. McKee for assistance with the numerical calculations. This 
work was supported by Contract PH 43-66-932 from t,he National Institute 
of Arthritis and Metabolic Diseases, NIH, DHEW. 

Appendix 
A simplified model of (2.7) and (3.6) has been developed, in order to examine 

the effect of changes in concentration due to some of the parameters, not,ably 
the radial velocity. Neglecting uc, ,  in (2.7), the equations are 

WC,z = C , r v  

c ,.+pc = 0 on r =  I, 

p = ( f - I ) u + # .  

Regarding u and w as constants, and requiring c to be an even fuiiction of r ,  we can 
solve easily by separation of variables, to obtain c = exp { - Ax) cos (Am)$ r .  The 
boundary condition at Y = I gives the transcendental equation 

- (hw)t sin (hw).2 +,8 cos (hw)B = 0. 

Solving for the (dominant) small eigenvalue, 

A = B / [ w ( ~  + 0 - 5 m  

which means that h increases from 0 to 2lw as p increases from 0 to 00, and that 
dhldp is a monotone decreasing function ofp. 

Since the concentration at z = L decreases as h increases, it follows that this 
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will occur when (i) X increases, (ii) E increases if 8 > u, (iii) u decreases if < 1, 
(iv) zu decreases. Therefore, from (iii) and (iv), decreasing both radial and axial 
velocity will cause a decrease in the concentration. However, these effects are not 
independent, since decreasing one will increase the other via continuity, so they 
actually oppose each other. From this result, it  appears likely that a decrease in 
w due to increasing u is dominant over an increase in ,8 due to decreasing u, so 
that the former effect will be more significant. Thus, increasing the ultra-filtration 
can be expected to decrease the concentration at x = L. This agrees with the 
findings obtained from the full set of equations. 
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